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Dissipative lattice model with exact traveling discrete kink-soliton solutions:
Discrete breather generation and reaction diffusion regime
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We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional
constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts
solutions. In the nondissipative or conservative regime, our numerical simulations show that narrow kinks can
propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge
from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the
importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion
reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape,
discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic.
@S1063-651X~99!16811-9#

PACS number~s!: 45.05.1x, 05.45.Yv, 63.20.Pw
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I. INTRODUCTION

In recent years, the dynamics of kinks in nondissipat
~Klein-Gordon! systems~for a recent review see Braun an
Kivshar @1#! or traveling wave fronts in strongly dissipativ
or reaction diffusion systems has attracted considerable
tention. It has become clear that continuous propaga
equations and reaction diffusion equations provide an in
equate description of the behavior of weakly coupled latti
where the interplay between nonlinearity and spatial d
creteness can lead to novel effects not present in the
tinuum models. For example, in nondissipative~or weakly!
lattices such as: ferromagnetic chains@2#, hydrogen bonded
chains@3#, or chain of base pairs in DNA@4#, kink solitons or
domain walls, whose width is of the order of few lattic
spacings, may pin on the lattice owing to discreteness
fects. On the other hand, in strongly dissipative lattices
coupled excitable cells, which are used as models in ne
physiology @5,6# and cardiophysiology@7# in order to de-
scribe wave propagation in nerve cells, wave propaga
failure, which also originates from lattice discreteness effe
@8# is an important phenomenon which may often lead
breakdown of these systems with potentially fatal con
quences.

In order to gain understanding of wave motions in d
crete systems, for which exact results are scarce even in
dimension, it is desirable to investigate lattice models w
exact solutions. In this regard, Schmidt@9# pointed out that if
the double-well on-site potential of thef4 lattice model is
suitably modified, the single kink soliton becomes an ex
solution to the discrete model; later, this model was show
be integrable in the static limit and admit exact static so
tions into the form of generally unpinned soliton lattic
~Jensenet al. @10#!. On the other hand, Bressloff and Row
lands@11#, using an approach which presents some simil
ties with Jensenet al. @10#, have recently shown that it i
possible to construct exact traveling wave solutions of a
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crete reaction diffusion equation, describing a system
coupled bistable elements, if the form of the bistable pot
tial is adequately chosen. In fact, their potential correspo
precisely to Schmidt’s potential. Very recently, the gene
problem of finding kink or pulse shaped traveling waves
lutions was considered by Flach and coworkers@12#. As
have the above-mentioned authors, they have approache
traveling wave existence problem from the inverse side, t
is, they have shown that for a given wave problem, cor
sponding equations of motion can be generated, so that t
equations yield the chosen wave profile as a solution. T
have studied conservative lattice models and dissipative~re-
action diffusion like! models, separately. One might ther
fore wonder if it is possible, in a similar way, to construct
general discrete model including both inertia and dissipati
Actually, generalizing Schmidt’s approach, we show in th
paper, that a lattice model with on-site double-well potent
with additional external force and dissipation terms, can a
admit exact kink or traveling wave front solutions in an
regime: nondissipative or dissipative.

The paper is organized as follows. First, we present
specific lattice model and show analytically that it can adm
exact discrete kink solutions if the double-well on-site pote
tial is adequately chosen. Then, in Sec. III, we study num
cally the propagation and collisions of discrete kinks a
antikinks, in the nondissipative and dissipative regimes.
Sec. IV, we consider the reaction diffusion regime and
vestigate numerically the properties of traveling discr
wavefronts solutions. Section V is devoted to concluding
marks.

II. MODEL AND EQUATION OF MOTION

We consider a chain of harmonically coupled particles
massm, lying in a double well on site potentialU. This
system is modeled by the general discrete equation of mo
7484 © 1999 The American Physical Society
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m
d2un

dt2
1G

dun

dt
5k@un1122un1un21#2F2

dU~un!

dun
,

~2.1!

whereun is thenth particle displacement,G is a dissipative
coefficient, andk is a coupling term.F is a constant term
which may be an external force and the energy gain dueF
is compensated by the loss mechanism. We assume th
traveling wave front solution of~2.1! has the following kink
shape:

un~ t !5u0 tanh~vt2kna!. ~2.2!

Here,u0 is the amplitude,a the lattice spacing, andv andk
are two constants such that the ratioc5v/k represents the
velocity of the front. Following Schmidt@9#, we construct a
potential, including the external potential, which has t
form:

V~un!5Fun1U~un!

5Fun2A
un

2

2
1B0

un
3

3
1B

un
4

4
1C0

un
5

5
1C

un
6

6
1D0

un
7

7

1D
un

8

8
1¯ , ~2.3!

such that the expression~2.2! becomes an exact discrete s
lution of ~2.1!. Here, A,B0 ,B,C0 ,C,D0 ,D, represent con-
stant coefficients. The detailed calculations are presente
the Appendix. We obtain the new equation of motion

m

k

d2vn

dt2
1

G

k

dvn

dt
52

dV~vn!

dvn
1@vn1122vn1vn21#,

~2.4!

where we have introduced the dimensionless variablevn
5t(un /u0), with t5tanh(ka). HereV(vn) is given by

V~vn!5avn1bvn
21gvn

31dvn
41j ln~12vn

2!, ~2.5!

with a52Gvt/k, b5(mv2/k21), g5Gv/(kt), d5
2mv2/(2kt2), andj522(t221). The propagation veloc
ity of the front is given by

c5
v

k
5

av

arctanh~t!
. ~2.6!

The general discrete equation of motion~2.4! with potential
~2.5! and solution

vn5t tanh~vt2kna!, ~2.7!

is valid for any value ofF andG. At this stage, three differ-
ent cases can be considered.

~i! WhenmÞ0 andG50, the coefficients ofvn andvn
3 in

~2.5! become zero, the symmetry breaking due toF disap-
pears and the potential becomes symmetric with two deg
erate minima. One recovers the conservative system stu
by Schmidt@9#; the total energy is constant and to each~v,
k! combination corresponds a different well shape and
locity.
t a

in

n-
ied

-

~ii ! WhenmÞ0, GÞ0, this is the general case where bo
inertial and dissipative effects play a role. The value ofv is
imposed@see Eq.~A7!# by the relationF52vu0G. It turns
out that the potential well shape and velocity both depe
uniquely on the choice ofk, that ist.

~iii ! WhenGÞ0 andm50, the lattice dynamics become
overdamped or diffusive. In~2.5!, b, the coefficient ofvn

2

reduces to21 andd, the coefficient ofvn
4 becomes zero: the

potential is asymmetric with two nondegenerate minim
This regime corresponds to the model studied by Bress
and Rowlands@11#.

In the following we consider these three cases successiv

III. NONDISSIPATIVE AND DISSIPATIVE REGIMES

A. Nondissipative regime

In this case (G50), the potential, represented in Fig.
becomes

V~vn!5S m
v2

k
21D vn

22m
v2

2kt2 vn
422~t221!ln~12vn

2!.

~3.1!

The barrier height is given by~3.2!,

E05Ut2S 12
v2

2v0
2D 2~12t2!ln~12t2!U, ~3.2!

with v0
25k/m. The equation of motion~2.4! is written as

d2vn

dt2
5v0

2@vn1122vn1vn21#

1v0
2F 2v2

v0
2t2 vn~vn

22t2!12vn22~12t2!
vn

12vn
2G .
~3.3!

FIG. 1. Symmetric potentialV(vn) in the nondissipative regime
with its two degenerate minima. The shape is obtained with
parametersv50.0493 andt50.761. The dashed line represents t
asymmetric oscillations of the central particles of the breather~with
an amplitudeDvn,max51.36) created by the kink-anti-kink colli-
sion.Emax represents the maximum of energy of the particles dur
the oscillations whileE0 is the energy barrier height.
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We have checked by numerical simulations that an ex
discrete kink solution given by~2.7! can propagate freely
that is, without experiencing any discreteness effect. In F
2, we have represented, at different times, a kinkK with a
width of five lattice spacings traveling in a lattice of 204
cells. The parameters of the lattice and the potential
respectively,k50.1 and m51, v50.0493 andt50.761.
Under these conditions, the velocity of the kink isc
50.023 cell s21. Note that no radiation effects are observ
which confirms that~2.7! is an exact solution.

Then we have studied the possible generation of nonlin
localized modes or discrete breathers via kink~K! and anti-
kink (K̄) collisions. This investigation was motivated by th
interesting properties of discrete breathers: these nont
logical excitations can exist in a large variety of nonline
lattices and their existence is associated with a localizatio
energy~for recent reviews see@13,14#!. Specifically, we have
studied numerically aK2K̄ collision where the two entities
travel at velocityc50.023 cell s21 and2c, respectively. As
shown in Fig. 3~a!, a discrete stationary breather and a sm
amplitude radiation background emerge from the weakly
elasticK2K̄ collision. In Fig. 3~b!, we have represented th
breather at three different times,t5500 s, t5510 s, andt
5520 s, respectively, such that we can observe its beha
over one periodTB of oscillation:TB520 s. The oscillations
of the central particules of the breather are asymmetric w
an amplitudeDVn,max50.961u20.4u51.36, as represente
by the dashed line in Fig. 1. Indeed, during the oscillatio
from Emax50.364 toE520.086, the central particles ove
come the potential barrierE05u20.214u, given by~3.2!. In
the breather spectrum, the fundamental angular freque
vB52p/TB50.314 rad s21 is represented bya in Fig. 4,
while the second and third harmonics are, respectively,
resented byb and c. Although the breather looks like ver
stable, it radiates phonons very slowly. The radiation f
quency corresponds to the third harmonics in the brea
spectrum~c in Fig. 4! which actually represents only 2% o
the energy of the first harmonic. Specifically, the frequen
of this third harmonic lies in the phonon band given byv
5v0A2@(12l)2cos(ka)#, as shown in Fig. 4, wherel

FIG. 2. Traveling kinkK with a width of five lattice spacings
and a constant velocityc50.023 cell s21 in the nondissipative re-
gime.
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5122(v2/v0
2)2(11t2)/(12t2). As a result, this small radia

tion can propagate. Nevertheless, in spite of these weak
diation losses, this discrete breather has an important lifet
and presents a physical interest. We have also investig
the collision of a static kink (c50) with a kink moving at
velocity c50.023 cell s21. Such a collision results in a dis
crete breather with the same properties as the static one
moving at mean velocitycb50.013 cell s21.

B. General dissipative regime

In the general regime, where both inertial and dissipat
terms are present, we have analyzed numerically aK2K̄
collision. As pointed out in Sec. II, the potential well sha
and velocity both depend on the choice oft. In this case, as
it should be expected, we have observed that the numbN
of breathing oscillations depends onG/m. For example, we
have the following results:N527 for G/m50.001,N58 for
G/m50.01, andN52 for G/m50.1. For G/m.0.1, the
number of oscillations decreases and tends rapidly to z
Our results suggest that in real lattices, where dissipa

FIG. 3. ~a! Creation of a discrete stationary breather with

small amplitude radiation background by aK2K̄ collision. ~b!
Representation of the breather at three different times (t5500 s, t
5510 s, andt5520 s) allowing to observe its behavior over on
period of oscillationTB520 s: the oscillations of the central partic
are asymmetric with an amplitudeDvn,max51.36 ~see Fig. 1!.
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cannot be ignored, the existence of breathers is relevant
in the case of weak dissipation. Actually, this general
gime, which should present unexpected features for so
parameters range, remains to be explored carefully and
be discussed elsewhere.

IV. STRONGLY DISSIPATIVE OR DIFFUSIVE REGIME

Let us now focus on the overdamped or diffusive ca
(m50). Equation~2.4! then reduces to

G
dvn

dt
5k@vn1122vn1vn21#

1FGvt12kvn2
Gv

t
vn

212k~t221!
vn

12vn
2G .
~4.1!

In order to compare our results~see hereafter! to those of
Bressloff and Rowlands@11#, we perform the following
transformations. We divide the two members of~4.1! by G
and setD5k/G, «D5v/(tD) anda052(12t2), to obtain

dvn

dt
5D@vn1122vn1vn21#

1DF«D@~12a0/2!2vn
2#2

a0vn

12vn
2 12vnG .

~4.2!

Equation~4.2! is a discrete reaction diffusion@7# equation of
the form:

dvn

dt
5D@vn1122vn1vn21#1 f ~vn!, ~4.3!

with kink-shaped solution~2.7! provided that, the potentia
V(vn) is well chosen. Indeed, the potential corresponding
f (vn) is

FIG. 4. Breather spectrum: the fundamental angular freque
vB50.314 rad s21 is represented by lettera while the second and
third harmonics are respectively represented byb andc. The third
harmonics~c! lies in the phonon band~represented by the continu
ous line! leading to small radiations of the breather.
ly
-
e

ill

e

o

V~vn!5DF«D~12a0/2!vn1vn
2

2«D

vn
3

3
1~a0/2!ln~12vn

2!G . ~4.4!

Note that, forD51, relation~4.3! is identical to the equation
~1.3! of Bressloff and Rowlands in@11#. The potential~4.4!,
represented in Fig. 5 as a function ofvn , is asymmetric with
two nondegenerate minima~a andb in Fig. 5!. The value of
v is imposed byF and the velocity of the discrete fron
solution of ~4.2! depends on the choice oft5tanh(ka). The
velocity of the front expressed in terms of the new para
etersa0 and«D is

c5v/k5
«DD

t
5

«DD

A12a0/2
. ~4.5!

This velocityc is proportional to the diffusion coefficientD,
as represented in Fig. 6 by the continuous linear curves~ob-
tained for different values of coefficienta!. In this figure are
also superimposed the results obtained by numerical sim
tions. They have been performed on a lattice of 2048 p
ticles, for different values of the diffusion coefficientD and
the a0 coefficient. The initial condition consists in a fron
given by relation~2.7!. One can observe that the velocitie
measured during the simulations~plus signs in Fig. 6! are
very well fitted by the theoretical curves. The fundamen
result, in the diffusive case, is the nonexistence of propa
tion failure, contrary to the systems described by a discr
reaction diffusion equation of the Fitzhugh-Nagumo ty
@8,15,16#. Indeed, in these systems, there exists a criti
value of the coupling constant~or the diffusion coefficient!
under which propagation of diffusion of fronts becomes i
possible@15#. Considering the discrete lattice with the pote
tial given by relation~4.4!, we observe numerically that, fo
any value of the diffusion coefficientD ~except forD50
when all the particles are independent!, there exists a travel-
ing wave front. In fact, for a lattice with a given couplin
constant, we have constructed a potential for which a pro

y FIG. 5. Asymmetric potentialV(vn) in the strongly dissipative
or diffusive regime. Lettersa andb represent the two nondegene
ate minima.
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gative discrete solution of the form~2.7! exists. But if we
modify the coupling constant of this lattice without changi
the potential shape, then expression~2.7! is no more a solu-
tion of the reaction diffusion equation~4.2!. As a result, in
this case, we find that propagation failure occurs, as sh
also by Bressloff and Rowlands@11#. We have then observe
that the collision between two wave fronts traveling in o
posite directions results into their annihilation.

V. CONCLUDING REMARKS

The generalized dissipative nonlinear Klein-Gordon l
tice model that we have introduced, interpolates between
Schmidt’s model@9# in the conservative regime and the r

FIG. 6. Theoretical velocity of the front@Eq. ~4.5!# in the diffu-
sive case for different values of the parametera ~continuous lines!:
~a! a51; ~b! a50.75; ~c! a50.5; ~d! a50.25; ~e! a50.01. The
measured velocity during simulations~1 signs! are very well fitted
by theoretical curves given by Eq.~4.5!.
n

-

-
he

action diffusion model of Bressloff and Rowlands@11# in the
overdamped regime. Like Flach and coworkers@12# we have
used an inverse method. However, contrary to these aut
who have considered the conservative and dissipative la
models separately, we have investigated a lattice mo
which includesboth inertia and dissipation, like many sys
tems in the real world. We have shown analytically that o
lattice equations admit exact discrete kink or traveling wa
fronts solutions if the double-well on-site potential is a
equately chosen. In the nondissipative regime, we h
checked numerically that discrete kink~antikink! solutions
can propagate freely without experiencing any discreten
effects. Kink-antikink collisions reveal that static or movin
discrete breathers with finite but with physically interesti
lifetimes can be generated. In the general dissipative reg
discrete kinks can propagate freely and the lifetimes of
discrete breathers that can be created by collisions betw
these kinks depend on the importance of the dissipat
These results are interesting: they suggest that, for the
lattices where dissipation cannot be ignored, discrete ki
can travel and combine to generate discrete breathers
reasonable lifetimes, if dissipative effects are weak eno
compared to inertial effects. In the overdamped or diffus
regime, discrete kinks or wave fronts can travel without e
periencing any lattice effects or propagation failure. Ho
ever, in this case, their collisions are totally inelastic. W
would like to point out again that our model and results a
relevant for physical systems in which the discreteness of
lattice is important. Obviously, further studies are necess
in the general dissipative regime to determine all the prop
ties of these kinks with exceptional mobilities. In conclusio
we believe that the understanding of discrete nonlinear m
els is an active and attractive topic of the current resea
Since realistic physical models are rather complicated, i
extremely important to develop the basic concepts with
help of simple lattice models with exact solutions.
APPENDIX: CALCULATIONS DETAILS

Starting from~2.1!, we seek a total potentialV(un)5Fun1U(un) under the form~2.3! such that~2.2! is an exact solution
of ~2.1!. SettingTn5tanh(vt2kna) andt5tanh(ka) we then get

dun

dt
5u0~12Tn

2!v, ~A1!

d2un

dt2
522u0v2~12Tn

2!Tn , ~A2!

un111un215u0@ tanh@vt2k~n11!a#1tanh@vt2k~n21!a##52u0~12t2!Tn~11t2Tn
21t4Tn

41¯ !, ~A3!

and

dV~un!

dun
5F2Aun1B0un

21Bun
31C0un

41Cun
51D0un

61Dun
71... . ~A4!

Substituting relations~A1!, ~A2!, and~A3! in ~2.1! yields

22mu0v2Tn~12Tn
2!1Gvu0~12Tn

2!22u0k~12t2!Tn~11t2Tn21t4Tn
41¯ !12ku0Tn1F2Au0Tn1B0u0

2Tn
21Bu0

3Tn
3

1C0u0
4Tn

41Cu0
5Tn

51Du0
6Tn

61Du0
7Tn

71¯50. ~A5!



PRE 60 7489DISSIPATIVE LATTICE MODEL WITH EXACT . . .
Writing this equation as a power series inTn , we get

~F1Gvu0!1Tn@2ku02Au022mu0v222ku0~12t2!#1Tn
2~B0u0

22gvu0!1Tn
3@2mu0v222ku0~12t2!t21Bu0

3#

1Tn
4C0u0

41Tn
5@Cu0

522u0k~12t2!t4#1Tn
6D0u0

61Tn
7@Du0

722ku0~12t2!t6#1¯50. ~A6!
Equation~A6! is satisfied for allt and all n, if each coeffi-
cient of the series vanishes, yielding:

F52Gvu0 , C050,

A52~kt22mv2!, C5
2

u0
@kt4~12t2!#,

B05
Gv

u0
, D050, ~A7!

B5
2

u0
2 @kt2~12t2!2mv2#, D5

2

u0
6 kt6~12t2!.

The potential expression becomes

V~un!5ku0
2F2

Gv

k

un

u0
1S mv2

k
21D un

2

u0
2 1

Gv

3k

un
3

u0
32

mv2

2k

un
4

u0
4

1
12t2

t2 S t2
un

2

u0
2 1

t4

2

un
4

u0
4 1

t6

3

un
6

u0
6 1

t8

4

un
8

u0
8 1¯ D G .

~A8!

Then ~A8! can be rearranged to give

V~un!5ku0
2F2

Gv

k S un

u0
D1S mv2

k
21D S un

u0
D 2

1
Gv

3k S un

u0
D 3

2
mv2

2k S un

u0
D 4

1S 12
1

t2D lnF12t2S un

u0
D 2G G . ~A9!

Equation~2.1! then becomes
ys
m
d2un

dt2
1G

dun

dt
5k@un1122un1un21#

2ku0F 2
Gv

k
12S mv2

k D un

u0
13

Gv

3k

un
2

u0
2

24
mv2

2k

un
3

u0
3 1S 12

1

t2D 22t2
un

u0

12t2
un

2

u0
2

G .

~A10!

Finally, settingvn5t(un /u0) and t5tanh(ka), we obtain
the general dimensionless equation of motion,

m
d2vn

dt2
1G

dvn

dt
5k@vn1122vn1vn21#2k

dV~vn!

dt
~A11!

which becomes

m
d2vn

dt2
1G

dvn

dt
5k@vn1122vn1vn21#

2kFa12bvn13gvn
2

14dvn
31j

vn

12vn
2G , ~A12!

with a52Gvt/k, b5(mv2/k21), g5Gv/(kt), d5
2mv2/(2kt2), j522(t221).
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