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Dissipative lattice model with exact traveling discrete kink-soliton solutions:
Discrete breather generation and reaction diffusion regime
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We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional
constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts
solutions. In the nondissipative or conservative regime, our numerical simulations show that narrow kinks can
propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge
from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the
importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion
reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape,
discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic.
[S1063-651%99)16811-9

PACS numbd(is): 45.05+x, 05.45.Yv, 63.20.Pw

[. INTRODUCTION crete reaction diffusion equation, describing a system of
coupled bistable elements, if the form of the bistable poten-
In recent years, the dynamics of kinks in nondissipativetial is adequately chosen. In fact, their potential corresponds
(Klein-Gordon systems(for a recent review see Braun and precisely to Schmidt's potential. Very recently, the general
Kivshar[1]) or traveling wave fronts in strongly dissipative problem of finding kink or pulse shaped traveling waves so-
or reaction diffusion systems has attracted considerable albtions was considered by Flach and coworkgtg]. As
tention. It has become clear that continuous propagatiohave the above-mentioned authors, they have approached the
equations and reaction diffusion equations provide an inadtraveling wave existence problem from the inverse side, that
equate description of the behavior of weakly coupled latticess, they have shown that for a given wave problem, corre-
where the interplay between nonlinearity and spatial dissponding equations of motion can be generated, so that these
creteness can lead to novel effects not present in the comquations yield the chosen wave profile as a solution. They
tinuum models. For example, in nondissipatice weakly) have studied conservative lattice models and dissipdtee
lattices such as: ferromagnetic cha[23, hydrogen bonded action diffusion like¢ models, separately. One might there-
chaing[3], or chain of base pairs in DNR4], kink solitons or ~ fore wonder if it is possible, in a similar way, to construct a
domain walls, whose width is of the order of few lattice general discrete model including both inertia and dissipation.
spacings, may pin on the lattice owing to discreteness efActually, generalizing Schmidt's approach, we show in this
fects. On the other hand, in strongly dissipative lattices ofpaper, that a lattice model with on-site double-well potential,
coupled excitable cells, which are used as models in neurawith additional external force and dissipation terms, can also
physiology [5,6] and cardiophysiology7] in order to de- admit exact kink or traveling wave front solutions in any
scribe wave propagation in nerve cells, wave propagatiomegime: nondissipative or dissipative.
failure, which also originates from lattice discreteness effects The paper is organized as follows. First, we present our
[8] is an important phenomenon which may often lead tospecific lattice model and show analytically that it can admit
breakdown of these systems with potentially fatal conseexact discrete kink solutions if the double-well on-site poten-
guences. tial is adequately chosen. Then, in Sec. lll, we study numeri-
In order to gain understanding of wave motions in dis-cally the propagation and collisions of discrete kinks and
crete systems, for which exact results are scarce even in orgtikinks, in the nondissipative and dissipative regimes. In
dimension, it is desirable to investigate lattice models withsec. |V, we consider the reaction diffusion regime and in-
exact solutions. In this regard, Schmié{ pointed out that if  yestigate numerically the properties of traveling discrete

i : 4 |atii - : . . .
the double-well on-site potential of the™ lattice model is  \yavefronts solutions. Section V is devoted to concluding re-
suitably modified, the single kink soliton becomes an exaciparks.

solution to the discrete model; later, this model was shown to

be integrable in the static limit and admit exact static solu-

tions into the form of generally unpinned soliton lattices

(Jenseret al. [10]). On the other hand, Bressloff and Row- !l MODEL AND EQUATION OF MOTION

lands[11], using an approach which presents some similari- We consider a chain of harmonically coupled particles of
ties with Jenseret al. [10], have recently shown that it is massm, lying in a double well on site potentidl. This
possible to construct exact traveling wave solutions of a dissystem is modeled by the general discrete equation of motion
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whereu, is thenth particle displacement; is a dissipative 3 0
coefficient, andk is a coupling termF is a constant term & Ragl Yt Ny E 1
which may be an external force and the energy gain die to 3= -0.s . R .::'
is compensated by the loss mechanism. We assume that ain oul . H
traveling wave front solution of2.1) has the following kink g E, “ b
shape: g s N, i
0.2 ‘s~ ':' ;.
up(t)=ugtani wt— kna). (2.2 i
-0.25 — —3 1
Here,uq is the amplitudea the lattice spacing, and and . . Loomm .
-1 -0.2 0 0.2 04 0.6 0.8 1

are two constants such that the ratie w/« represents the
velocity of the front. Following Schmidi9], we construct a
potential, including the external potential, which has the

form:

Position v (a.u)

FIG. 1. Symmetric potentia¥ (v,,) in the nondissipative regime
with its two degenerate minima. The shape is obtained with the
parameters=0.0493 andr=0.761. The dashed line represents the
asymmetric oscillations of the central particles of the breativith

V(up)=Fu,+U(uy)
an amplitudeAv, n,x=1.36) created by the kink-anti-kink colli-

2 3 4 5 6 7
u
=Fu,—A ?n + Bo?n +B Zn + Cogn +C En + Do7n sion.E . represents the maximum of energy of the particles during
the oscillations whileE, is the energy barrier height.
8
u . .

+D 2, (2.3 (i) Whenm#0, I' # 0, this is the general case where both

8 inertial and dissipative effects play a role. The valuesab

. . _imposed[see Eq(A7)] by the relationF = — wuol’. It turns
su_ch that the expressid@.2) becomes an exact discrete so out that the potential well shape and velocity both depend
lution of (2.1). Here, A,By,B,Cy,C,Dq,D, represent con- . . :

. : . uniquely on the choice ok, that is 7.
stant coefficients. The detailed calculations are presented in ... o . .
the Appendix. We obtain the new equation of motion (i) WhenI'#0 andm=0, the lattice dynamics becomes
P ' q overdamped or diffusive. I1i2.5), B, the coefficient ofvﬁ
reduces to-1 ands, the coefficient of/;; becomes zero: the

md?v, T dv, dV(v,) >S 10 > coe L
?W+FW:_THV”“_ZV#V”*]’ potential is asymmetric with two nondegenerate minima.
n This regime corresponds to the model studied by Bressloff

(2.4 and Rowland$11].

where we have introduced the dimensionless variable |, he following we consider these three cases successively.

=7(u,/ug), with 7=tanha). HereV(v,) is given by

V(Vy)=avy+ Bv2+ Wi+ vi+ eIn(1—-v3), (2.5 IIl. NONDISSIPATIVE AND DISSIPATIVE REGIMES
A. Nondissipative regime

with a=-Twrk, B=(mw?k—1), y=Twl/(k7), 6= . . -
—mw?/(2k7?), andé=—2(72—1). The propagation veloc- In this case [=0), the potential, represented in Fig. 1,
ity of the front is given by becomes

w2 w2
o aw V(vp)=|m-——1|vi—-m-—5vi-2(2—1)In(1-v3).
- t . (2'6) k 2kT
x arctankir) 3.
The general discrete equation of moti¢gh4) with potential  The parrier height is given b(8.2),
(2.5 and solution
2
2.7 Eo= 72(1— w—z) —(1-P)I(1-2)|, (32

2(1)0

v,=rtanhwt—«kna),

is valid for any value of andI'. At this stage, three differ- with wgzk/m. The equation of motiori2.4) is written as

ent cases can be considered.
(i) Whenm# 0 andI’ =0, the coefficients of, andvﬁ in

(2.5 become zero, the symmetry breaking dueFtalisap- T

pears and the potential becomes symmetric with two degen-
erate minima. One recovers the conservative system studied
by Schmidt[9]; the total energy is constant and to edeh

x) combination corresponds a different well shape and ve-

locity.

2
n

+w§

2w? Vi
an(vﬁ— 72)+2Vn— 2(1- 7‘2) 1_\/2} .

2
= wO[Vn+l_ 2Vn"'anl]

n

(3.3
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FIG. 2. Traveling kinkK with a width of five lattice spacings
and a constant velocitg=0.023 cell 5! in the nondissipative re- Ll

ime.
9 > o}  t=s00s V

We have checked by numerical simulations that an exact

AE i i ; ; . . . . . \ 4
discrete kink solution given by2.7) can propagate freely, 870 980 990 1000 1010 1020 1030 1040 1050 1080 1070 1080
that is, without experiencing any discreteness effect. In Fig. LN
2, we have represented, at different times, a Kinkvith a N I .
width of five lattice spacings traveling in a lattice of 2048
cells. The parameters of the lattice and the potential are, o ... . ]
respectively,k=0.l and m=l, w=0.0493 and7-=0.761. 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080

Under these conditions, the velocity of the kink &
=0.023cells*. Note that no radiation effects are observed »° of  t=s20s H
which confirms that2.7) is an exact solution.
Then we have studied the possible generation of nonlinear e T T T e e e e
localized modes or discrete breathers via kikk and anti- Cell number n

kink (K) collisions. This investigation was motivated by the . ) ) )
interesting properties of discrete breathers: these nontopo- FIG. 3. (@ Creation of a discrete stationary breather with a
logical excitations can exist in a large variety of nonlinearsmall amplitude radiation background by ka—K collision. (b)
lattices and their existence is associated with a localization dRepresentation of the breather at three different tintes500's, t
energy(for recent reviews sed 3,14)). Specifically, we have =510s, andt=520s) allowing to observe its behavior over one
studied numerically :K—E collision where the two entities period of osmlllatlo.nTB:ZO S: t.he oscillations of the ce.ntral particle
travel at velocityc=0.023 cell§* and —c, respectively. As are asymmetric with an amplitudev , ma,=1.36 (see Fig. 1

shown in Fig. 8a), a discrete stationary breather and a smaII:1_2((02/%2))_(1+ Al(1— 7). As a result, this small radia-

amplitude radiation background emerge from the weakly In_tion can propagate. Nevertheless, in spite of these weak ra-

elastick —K collision. In Fig. 3b), we have represented this gjiation |osses, this discrete breather has an important lifetime

breather at three different times=500 s,t=510 s, andt  5nq presents a physical interest. We have also investigated
=520 s, respectively, such that we can observe its behaviQhe collision of a static kink ¢=0) with a kink moving at

over one period g of oscillation: Tg=20 s. The oscillations velocity c=0.023 cells . Such a collision results in a dis-

of the central particules of the breather are asymmetric With.ree breather with the same properties as the static one, but
an amplitudeAV,, ,,=0.96+|—0.4=1.36, as represented moving at mean velocitg,=0.013 cell s .

by the dashed line in Fig. 1. Indeed, during the oscillations
from E,,,,=0.364 toE= —0.086, the central particles over-
come the potential barrieE,=|—0.214, given by(3.2). In

the breather spectrum, the fundamental angular frequency In the general regime, where both inertial and dissipative
wg=2mTg=0.314 rads’ is represented by in Fig. 4, terms are present, we have analyzed numericall-aK
while the second and third harmonics are, respectively, repeollision. As pointed out in Sec. Il, the potential well shape
resented byb andc. Although the breather looks like very and velocity both depend on the choiceofin this case, as
stable, it radiates phonons very slowly. The radiation fre4t should be expected, we have observed that the number
quency corresponds to the third harmonics in the breathesf breathing oscillations depends dim. For example, we
spectrum(c in Fig. 4) which actually represents only 2% of have the following resultd\= 27 forI'/m=0.001,N=8 for

the energy of the first harmonic. Specifically, the frequency’/m=0.01, andN=2 for I'/m=0.1. For I'/m>0.1, the

of this third harmonic lies in the phonon band given &y number of oscillations decreases and tends rapidly to zero.
=woV2[(1—\)—coska)], as shown in Fig. 4, whera Our results suggest that in real lattices, where dissipation

B. General dissipative regime
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FIG. 4. Breather spectrum: the fundamental angular frequency F|G. 5. Asymmetric potentiaV/(v,,) in the strongly dissipative
w=0.314 rad §* is represented by lettex while the second and o diffusive regime. Lettera andb represent the two nondegener-
third harmonics are respectively representedblndc. The third  ate minima.
harmonics(c) lies in the phonon ban¢tepresented by the continu-
ous line leading to small radiations of the breather.

. , _ V(v,)=D| ep(1—ag/2)vy+Vv2
cannot be ignored, the existence of breathers is relevant only
in the case of weak dissipation. Actually, this general re- v3
gime, which should present unexpected features for some _SD?”JF(QO/Z)m(l_Vﬁ) _ (4.4)
parameters range, remains to be explored carefully and will

be discussed elsewhere. ) o . .
Note that, forD =1, relation(4.3) is identical to the equation

(1.3 of Bressloff and Rowlands ifiL1]. The potential4.4),
represented in Fig. 5 as a functionwgf, is asymmetric with
Let us now focus on the overdamped or diffusive caseéwo nondegenerate mininfa andb in Fig. 5). The value of

IV. STRONGLY DISSIPATIVE OR DIFFUSIVE REGIME

(m=0). Equation(2.4) then reduces to w is imposed byF and the velocity of the discrete front
solution of (4.2) depends on the choice ef=tanh(a). The
Fﬁzk[v PV velocity of the front expressed in terms of the new param-
dt n+l =¥t ¥n-1 etersay andep is
lNw Y
2 _ n epD epD
| ToT+2kv,— — va+2k( 72 1)1_ﬁvn . e/ P ®o 5

o B \/1_a0/2.

This velocityc is proportional to the diffusion coefficiel,
In order to compare our resultsee hereaftgrto those of 55 represented in Fig. 6 by the continuous linear cufebs
Bressloff and Rowland$11], we perform the following (4ined for different values of coefficiend. In this figure are
transformations. We divide the two memberzs(éfl) by I' " also superimposed the results obtained by numerical simula-
and seD =k/T', ep=w/(7D) anday=2(1-177), to obtain  ions. They have been performed on a lattice of 2048 par-
ticles, for different values of the diffusion coefficiebtand

(4.1)

dv,

it =D[Vys1—2Vp+ V1] the aq coefficient. The initial condition consists in a front
given by relation(2.7). One can observe that the velocities
v measured during the simulatiofiglus signs in Fig. B are
D SD[(l—ao/Z)—Vﬁ]— I 0 ”2 +2v,|. very well fitted by the theoretical curves. The fundamental
-V

result, in the diffusive case, is the nonexistence of propaga-

(4.2  tion failure, contrary to the systems described by a discrete

reaction diffusion equation of the Fitzhugh-Nagumo type

Equation(4.2) is a discrete reaction diffusid’] equation of  [8,15,16. Indeed, in these systems, there exists a critical

the form: value of the coupling constaitbr the diffusion coefficient
under which propagation of diffusion of fronts becomes im-
dv, possiblg 15]. Considering the discrete lattice with the poten-
dt =DlVn1=2vn+vn_a]+ T (vp), 4.3 tial given by relation(4.4), we observe numerically that, for

any value of the diffusion coefficier®d (except forD=0
with kink-shaped solutiorf2.7) provided that, the potential when all the particles are independenhere exists a travel-
V(v,) is well chosen. Indeed, the potential corresponding tang wave front. In fact, for a lattice with a given coupling
f(vy) is constant, we have constructed a potential for which a propa-
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0.2 ——— action diffusion model of Bressloff and Rowlandsl] in the
overdamped regime. Like Flach and coworkelr8] we have
used an inverse method. However, contrary to these authors
who have considered the conservative and dissipative lattice
models separately, we have investigated a lattice model
which includesboth inertia and dissipation, like many sys-
tems in the real world. We have shown analytically that our
lattice equations admit exact discrete kink or traveling wave
fronts solutions if the double-well on-site potential is ad-
equately chosen. In the nondissipative regime, we have
checked numerically that discrete kirjantikink) solutions
can propagate freely without experiencing any discreteness
effects. Kink-antikink collisions reveal that static or moving
. . L : R . . discrete breathers with finite but with physically interesting
0oL 002 003 004 005 006 07 008 009 Ol lifetimes can be generated. In the general dissipative regime,
Retisauesetiently (L) discrete kinks can propagate freely and the lifetimes of the
discrete breathers that can be created by collisions between
these kinks depend on the importance of the dissipation.
These results are interesting: they suggest that, for the real
lattices where dissipation cannot be ignored, discrete kinks
can travel and combine to generate discrete breathers with
reasonable lifetimes, if dissipative effects are weak enough
gative discrete solution of the forif2.7) exists. But if we compared to inertial effects. In the overdamped or diffusive
modify the coupling constant of this lattice without changingregime, discrete kinks or wave fronts can travel without ex-
the potential shape, then expressi@r) is no more a solu- Periencing any lattice effects or propagation failure. How-
tion of the reaction diffusion equatio@.2). As a result, in ~ €Vver, in this case, their collisions are totally inelastic. We
this case, we find that propagation failure occurs, as showiould like to point out again that our model and results are
also by Bressloff and Rowlandi&1]. We have then observed relevant for physical systems in which the discreteness of the
that the collision between two wave fronts trave]ing in op_lattice is important. ObViOUSly, further studies are necessary
posite directions results into their annihilation. in the general dissipative regime to determine all the proper-
ties of these kinks with exceptional mobilities. In conclusion,
we believe that the understanding of discrete nonlinear mod-
els is an active and attractive topic of the current research.
The generalized dissipative nonlinear Klein-Gordon lat-Since realistic physical models are rather complicated, it is
tice model that we have introduced, interpolates between thextremely important to develop the basic concepts with the
Schmidt's mode[9] in the conservative regime and the re- help of simple lattice models with exact solutions.
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FIG. 6. Theoretical velocity of the frofEqg. (4.5] in the diffu-
sive case for different values of the parametdcontinuous lines
(@ a=1; (b) a=0.75; (c) «=0.5; (d) «=0.25; (e) «a=0.01. The
measured velocity during simulatiofs signg are very well fitted
by theoretical curves given by E.5).

V. CONCLUDING REMARKS

APPENDIX: CALCULATIONS DETAILS

Starting from(2.1), we seek a total potentid(u,)) =Fu,+U(u,) under the form2.3) such that(2.2) is an exact solution
of (2.1). SettingT,,=tanht—«na) and r=tanh(a) we then get

du, )

g~ Uo(1-The, (A1)
d?u
Tz” =—2Up?(1-THT,, (A2)
Un+ 1+ Un_1=Ug[tanH wt— k(n+1)a]+tanf wt— k(nN—1)a]]=2ug(1— 7)) To(1+ T2+ *Tr+- 1), (A3)
and
dV(u

d(un”) =F—Au,+Bou2+Bud+Cout+ Cul+Doul+Du’+... . (A4)

Substituting relationgAl), (A2), and(A3) in (2.1) yields

—2MUp?To(1=T2) + T wUg(1—T2) — 2ugk(1— 72) T(1+ 72TN?+ 74Tp+ )+ 2kug Ty + F— AU T+ Bous T2+ BUST?

+CougTa+ CUgTo+DuSTe+ DulT/+---=0. (A5)
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Writing this equation as a power seriesTip, we get

DISSIPATIVE LATTICE MODEL WITH EXACT . ..

7489

(F+T wug) + Tal 2KUg— AUy — 2MUgw?— 2kug(1— 72) ]+ T2(Bou3— ywug) + T 2Mmugw?— 2kug(1— 72) 72+ BUu3]

+TrCoug+ T CUs— 2upk(1— 72) 4]+ TEDuS + T/[Duj— 2kug(1— 72) 78]+ -+=0

Equation(A6) is satisfied for allt and alln, if each coeffi-

cient of the series vanishes, yielding:

F=—qu0, COZO,

2
A=2(kr*~me?), C=_-[kr'(1-77)],
0

lNw
BOZ_, DOZO, (A?)
Uo
2 2
= —[kr?(1— %) — mw?], D=—6k7'6(1—7'2).
Uo Ug
The potential expression becomes
v ‘ lNw un+ Maw? U§+Fw U‘:’ Mow? uﬁ
() =k~ et |
1-72 uﬁ 7 uﬁ 0 uﬁ ° u8
T 72—2 ERT ——e+——s+
T Uup 2u; 3u; 4u
(A8)

Then(A8) can be rearranged to give
Mow? e 2 Tw/(u,\®
TR G Tk g

Up |2
u—o> H (A9

| )

V(u,) = ku0 K

u0
mo? [ Uy, 4+ 1 1 |
e i =i L

Equation(2.1) then becomes

1-72

(A6)
[
d?u, _ du,
m a2 +FW:k[un+l_2un+unfl]
" Fw+2 mw?\ u, lNw uj
B I A AT VT
u
02N
me? u3 (1 1) 27 Uo
2k ug 7 zuﬁ
1-7—
Up
(A10)

Finally, settingv,=7(u,/ug) and r=tanhka), we obtain
the general dimensionless equation of motion,

d?v, _ dv, dV(v,)

mW +I'—— d 2Vn+Vn,1]—k dt

k[Vn+ 1
(A1l
which becomes

d?v, _ dv,
I —==kVni1—

AT dt

2Vn+Vn,1]

kK| a+2Bv,+3yv2

\'
+ASVI+E 1_’:/2}, (A12)

n
with a=-T w7k, B=(mw?/k—1),
—me?/(2k7?), £é=-2(7*~1).

v=Twl/(k7), 6=
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